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Synopsis
The model introduced by Verdier for the change of configuration of a polymer-molecule 

in solution has been examined and a new possibility for the motion of the polymer-segments 
has been tried. It is concluded that the long-ranged effect of the excluded-volume has almost 
no influence on the motion, while the rules chosen for changing bond-angles and bond-directions 
seems to be the determining factors. It is suggested that the relaxation-time for the change of 
configuration of a linear polymer with n segments should be proportional either to n2 or to n3, 
but the theory gives no possibility for preferring one possibility instead of the other.

The article includes a proposal for an extended least-squaremethod of estimation, which 
may be of general value, especially in Monte Carlo calculations.
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This work has been inspired by an article by Verdier and Stockmayer (1), 
which was later followed by two additional articles by Verdier (2-3).
The polymers considered are assumed to consist of simple chains of n 

units (atoms). A cubic-lattice model is used for the configuration of the 
polymer. In a Cartesian reference-system this means that the atoms of the 
polymer are only allowed to be on points with integral coordinates, the 
distance between neighbouring atoms in the polymer being one. In models 
where the so called “excluded volume effect” is taken into consideration the 
further constraint that no two atoms are permitted to have identical coordi
nates is added. Within these restrictions all configurations are equally probable.

Several different models have been tried for the polymer changing its 
configuration, the general feature of all the models being the following: At 
equal time-intervals (t = 1, 2, 3, . . .) one of the n atoms of the polymer is 
choosen at random and moved according to the specific rules of the model, 
which may imply that no motion takes place. The philosophy behind these 
rules is that independent of the actual configuration of the polymer, any 
part of it has, within each unit of time, an equal probability of being affected 
by the surroundings (the solvent-molecules or other parts of the polymer) 
to such an extent that it changes its configuration significantly. If the time
unit of the model corresponds to this probability being 1/n, the model should 
be a reasonable discrete analogue of the actual physical process. The time
unit of the model will then be a/n real time-units (seconds), where a is an 
unknown constant.

The detailed rules of the seven models, which have been tried are as 
follows :

Model I (which is identical with the model introduced by Verdier and 
Stockmayer (1)) is a model with excluded volume. Let the chosen atom be 
numbered i. If it is not an end-atom (i 4= 1 zs i + n) then the local configura
tion is either as shown in Fig. 1 or as shown in Fig. 2. For the case shown in 
Fig. 1 no movement is possible. For the case shown in Fig. 2 the configuration 
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is changed to the configuration shown in Fig. 3 (meaning that the directions 
from atom no. i-1 to atom no. i and from no. ito no. i+1 are interchanged) 
if the new configuration of the polymer does not conflict with the excluded- 
volume constraint. If on the other hand the chosen atom is an end-atom, 
the direction from the neighbouring atom lo the end-atom is changed to one 
of the directions perpendicular to the original one, the choise being made 
at random between the four possibilities, ami again the change is only carried 
out if it does not result in a conflict with the excluded volume constraint.

In Model II an additional type of motion is included, while the excluded- 
volume-effect is maintained. If the local configuration is as s 4 a
or Fig. 4b then no change occurs in Model I, while in Model II a 90°-rotation 
to either the configuration of Fig. 5 a (respective 5b) or the configuration of
Fig. 6 a (respective 6 b) is attempted, the choice between Fig. 5 and Fig. 6 
being random and the actual decision, whether to move or not to move is 
made so that the structure remains consistent with the excluded-volume 
constraint. The physical significance of the difference between the two models 
seems quite small, from a mathematical viewpoint however the difference is 
very important. In Model 1 the number of “bonds” in any of the six possible 
directions is conserved except for the movement of the end-atoms, while this 
is not the case in Model II.

In the Models III—VI only the excluded-volume-effect among next-neigh
bouring atoms in the polymer is maintained, such that atoms being separated 
by more than one atom are allowed to occupy the same lattice point. Except 
for this difference, the rules in Model III are the same as those of Model I 
and the rides in Model IV are analogous to those of Model II. In Model IV 
the special question of how to treat a configuration like the one shown in 
Fig. 7 arises. It was arbitrarily decided to treat it as the configuration shown 
in Fig. 4a and not as the configuration shown in Fig. 4b.

In the Models V and VI the probability of the movement, which leads 
from the configurations shown in Fig. 4 to those shown in Fig. 5 and 6, is 
diminished as compared to Model IV. In Model V it is decreased by a factor 
5/9 which is obtained by leaving out the movement if the configuration is the 
one shown in Fig. 5 b.

In Model VI a further reduction by a factor 1/2 as compared to Model V 
is obtained by introducing a random choice of whether to move or not to move.

Finally in Model VII the effect of the excluded volume is totally neglected, 
the rules otherwise being the same as the rules of Model I and III except 
for a small change in the rules for moving the end-atoms. The choice for this 
movement is now made between all six possible directions of the bond to



Nr. 2 o

i - 1 i i + 1o--- •----•
Vig. 1

Vig. 2

i + 1

Vig. 3

i - 1

I
i - 2

Vig. 7

i 4- 1



6 Nr. 2

the end-atoms. This change was introduced in the hope that it would then 
be possible to solve the model theoretically.

All the models for the movement of the polymer are Markovian, the process 
being discrete with the allowed configurations of the polymer as the stales 
of the process. Taking configurations to be identical if they can be mapped 
onto each other by a simple translation (taking the numbering of the atoms 
into account), it is readily seen that the stochastic matrix for the Markov- 
process is symmetrical, and since not all atoms can be moved in all configura
tions not all the diagonal-elements of the matrix can be zero. The implication 
of this can be summarized as follows: The stochastic matrix is diagonalizable, 
all the eigenvalues are real, there are no transient states, there is no eigenvalue 
equal to —1 and the process is not cyclic. (See e. g. Householder (4)). The 
configurations are numbered from 1 to N, where for a specific polymer N 
depends on the extend to which the excluded volume is taken into account. 
If pji is the conditional probability that a polymer which at lime t has con
figuration no. i will have configuration no. j at time t + 1, then the stochastical 
matrix is:

P = (Pji}

Note that the matrix is transposed as compared to normal statistical nomen
clature. When we introduce the probability-vector ;>(T) the i’th component 
of which is equal to the probability of finding the polymer in the configuration 
no. i to time t and e as the vector having all unit components, the theory of 
Markov-processes gives as usual (the suffix T stands for transposing and all 
non-transposed vectors are taken to be column-vectors):

p(T> = = py°> (1)

cT//T) = 1. (2)

Numbering the eigenvalues by their numerical value:

|Ài| y |À2| = |A3| = . . . è |àn|; Ài = 1

and numbering the eigenvectors, .$4, accordingly a suitable normalization

,s-jr Sj — 5jj (3)

/ 1 1 1 1 \
S1T = -7=, IW (4)

\|/ N |/N | N

N
/>«> - 2 (sitp<°')ài‘S1.

i = 1
(3)
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In the case where the polymer is able to change from any configuration to 
any other configuration in a finite number of steps, the eigenvalue 1 is non
degenerate, with the result that:

m 1lim = e. (6)
t-> 00 N

This means that the equilibrium-distribution of the Markov-process always 
woidd be identical to the static equilibrium distribution, where all con
figurations are equally probable.

This is not the case however, for the models I and II. Consider e. g. the 
configuration shown in Fig. 8 in which the polymer has tied itself in a tight 
knot, which it is not possible to untie by the movements allowed in the two 
models mentioned. (It should be noticed that it is essential that the knot is 
tight, and that the number of knots in general is not a constant of the motion.) 
On the other hand, since the knot consists of a total of 18 atoms, having very 
limited possibilities of moving, the number of configurations with tight knots 
is a very small fraction, only, of the total number of configurations. Therefore 
disregarding these configurations totally and changing N and the stochastic 
matrix accordingly, probably introduces only a negligible difference. In the 
following it will consequently be assumed that |Xa| < 1 and that eqn. (6) is 
valid for the models.

We consider now a measurable property, f, for the polymer, which means 
that f is a stochastic variable for the Markov-process. Let f be the vector, 
the i’th component of which has the value assumed by f when the polymer 
is in configuration no. i, then the expectation-value of f at time t is given by:

N
E{f(t)} = /T />"> = 2 (siTP<01) AiVM 

i -1
(7)

Km E{f(t)} - E{f(~)} - (frP)/N (8)

E{f(t)} - E{f(»)}+ 2 «Ai1
i - 2

(7 a)

ai - (siT/i<0>)(/'Ts1).

As it stands eqn. (7) is an expression which is not particularly useful since 
N is of the order 5n. If, however, one or two of the eigenvalues are much 
closer to one than any of the other eigenvalues (-1/In |À2| » -1/ln |Aj| if 
|Aj| + IA2I )then it would be possible to describe the process by one or two 
relaxation-times, meaning that the summation in (7) is cut off at 3 (if | A3I + IÄ2I). 
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It is of course a very queer assumption and al the present no attempt shall 
be made to defend it except that it is a very usual approximation (see ref. 5).

At a first glance eqn. (7) would give the impression that the relaxation
lime does not depend on the chosen property. This need not to be the case, 
however, if fls-2 is zero for some properties and not for others. Considering 
the form of the stochastic matrix, it is found that the matrix must be invariant 
under the transformation-group obtained by taking the direct product of the 
full cubic-symmetry group (Oh) and a group with two elements corresponding 
to the possibility of renumbering the polymer-atoms from the other end. 
Normal group-theoretical arguments then show that only properties trans
forming in the same manner under this group can be expected to have equal 
relaxation-times. On the other hand it should not be unreasonable, among 
properties transforming in the same manner to choose that property, which 
it is most convenient to work with. Since p(0O) is invariant under the group, 
all properties having no invariant component should converge to zero as t 
goes to infinity.

Another way of getting rid of some of the relaxation-times by making some 
of the ofs zero, would be to make some of the scalar products ($iT p(0)) zero. 
This could be obtained by choosing a starting configuration (or distribution 
of configurations) with a special symmetry. Il will never be possible to exclude 
the eigenvalues having invariant eigenvectors in this manner, however.

Instead of attempting to press the theoretical considerations further it has 
been tried to get additional insight in the problems by a Monte-Carlo calcula
tion, using a direct simulation of the Markov-process. The calculations have 
been carried out on a GIER-computer and the programs have so far been 
written in GIER-Algol 3 with parts of the program in machine-code to keep 
Hie computing-lime within days. The randomness has been introduced by 
using a pseudo-random-number-generator:

Xn + i = 23 xn mod (239 + 1) (9)

where xn is the n’th random number (Zelen and Severo (6)).
The detailed accomplishment of the simulation was as follows. For each 

model and each chosen n, a polymer was started several limes in the same, 
fixed starting-configuration and allowed to move according to the rules of 
the model. At equal time-intervals (in model-time-units) the actual configura
tion was registered and the value of the selected property was calculated. 
Up till now only a single property has been tried, namely the square of the 
end-to-end distance of the polymer, which is invariant under the symmetry- 
group of the stochastic matrix. This property has the advantage of being 
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the most thoroughly examined property of the equilibrium distribution. A 
property depending more explicitly on the positions of all the atoms of the 
polymer, such as the radius of gyration would be expected to have a smaller 
variance on the average-values and thus give better estimates.

The starting-configuration has been rather close to a three-fold-axis in 
the cubic-lattice, consisting of alternating bonds in the directions (1,0, 0), 
(0, 1, 0) and (0, 0,1). This configuration has the advantage of having a very 
high value of the end-to-end distance.

The decision of spacing the “observations” equally in time was made to 
simplify the administration in the programs, the smaller efficiency being 
compensated by a rather close spacing. The disadvantages of this strategy 
should be compensated for by the sophisticated method of estimation which 
was used (see Appendix).

Applying the hypothesis of two eigenvalues being sufficient, the squared 
end-to-end distance of the i’th registration, di, should have the expectation- 
va^ue’ E{di} = deq + cx2e“ Y2’A + a3e“Y31^ (10)

(where deq is the equilibrium-value of the squared end-to-end distance, and 
A is the time spacing between two consecutive registrations of d).

The estimation of the live parameters deq, ex-?, 0(3, y2 and y3 is exactly 
the kind of problem treated in the Appendix. To ensure the reliability of the 
result a graphical test was made.

In order to test whether the method of estimation outlined in the Appendix 
was applicable in the present case a presumably typical example was selected, 
Model II with 11 = 32, and this was thoroughly examined, using a material 
of all together 640 starts. Three problems were of special interest: Which 
of the three formulas (I. 12), (I. 15) and (I. 17) should be used to estimate 
the variance? Would the number of observations during a single start be 
important, if the spacing between the observations was adjusted to keep the 
total running-lime of the starts constant? And would varying the number of 
starts used for estimation give the expected results?

To settle the first question both formula (I. 12) and formula (I. 17) were 
used in all the cases which were also used to answer the two other problems. 
Since the difference between the resulting standard deviations was of the 
order 10 % and since q (formula (I. 3 a)) also showed to be of that order, 
it was decided to use (I. 17), since it was the simplest formula. Consequently 
all standard deviations quoted will refer to this formula.

To see the influence of the number of observations, estimations were 
carried out with 8, 16 and 32 observations during the 8192 model-time-units
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Table 1.

Table 1 shows that the squared end-to-end distance at equilibrium, deq, and the reciprocal 
relaxation time, y2, are essentially independent of the number of observations.

Number of 
observations

Number of
starts q ‘Uq a2

8 160 2.2810 - 2 63 ± 4.1 4.6510 - 4 ± 6.110 - 5
16 160 7.9Olo - 2 60 ± 4.2 4.1710 - 4 ± 4.610 - 5
32 160 1.8110 - 1 62 ± 3.2 4.4610 - 4 ± 3.410 - 5

8 640 9.4810 - 3 57 ± 1.3 2.9210 - 4 ± 1.610 - 4
16 640 2.741O - 2 61 ± 2.9 3.6210 — 4 ± 2.710 — 5
32 640 5.2110 - 2 65 ± 2.0 4.4910 - 4 ± 2.010 - 5

in which each start was followed. To ensure that the conclusions would not 
depend strongly on the number of starts used, both the total of all 640 starts 
and a smaller group of 160 starts were used for the estimation. The results 
are shown in Table I. The differences do not seem to be significant. To use 
8 observations for estimating 5 parameters is however rather unfavourable, 
and this leaves us with the choice between 16 and 32 observations. In general 
16 has been used since this gives a smaller computation-time and a better 
numerical stability in finding the minimum for q. Finally, to see the effect 
of varying the number of starts, estimations were made on four groups of 
40 starts each, on four groups of 160 starts each and on all 640 starts together. 
The results are shown in Table 2. It should be remarked that the estimations 
on the groups of 40 starts were made with 16 observations per start, while 
the others were made with 32 observations per start, meaning that the q’s 
are not directly comparable. The two rows denoted mean give the mean of 
the four rows just above. The uncertainties quoted in these two rows are 
calculated from square-sums of the deviation from the mean, not using the 
uncertainties on the single estimates. The behaviour of the results seems 
satisfactory and especially it seems that the method of estimating the standard
deviation is reasonable.

For the general choice of the number of starts to use for estimation, the 
following considerations were essential. It was desirable to have approxi
mately the same relative error on the estimates. If the number of starts was 
too low, it was extremely difficult to lind minimum for q. The computation 
per start was however growing rapidly with the number of atoms in the 
polymer. It was found that when the number of atoms was equal to 8, 16, 
32, 64 and 128 respectively, a reasonable compromise was something around 
1200, 600, 300, 150 and 60 starts respectively.
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Table 2.

Table 2 shows that the estimated standard deviation is essentially proportional to the 
square root of the number of starts.

Numbers of
starts q deq «2

40 2.6810 - 1 48 ± 6.6 3.28)0 - 4 ± 6.0)0 - 5
40 9.1910 — 2 42 ± 95 2.37)0 - 4 ± 7.0)o - 4
40 1.281O - 1 72 ± 16 7.70)0 - 4 ± 1.9)o - 4
40 3.7710 - 2 67 ± 21 4.86)0 - 4 ± 1.7)0 - 4

mean 160 l-3210 - 1 57 ± 7.3 4.55)0 - 4 ± 1.2)0 - 4

160 l-Sho - 1 62 ± 3.2 4-46)0 — 4 ± 3.4)0 — 5
160 2.3610 - 1 60 ± 4.0 3.80)0 - 4 ± 3.4)0 - 5
160 2.6210 - 1 61 ± 3.0 5.14)0 - 4 ± 3.4)0 - 5
160 1-94)0 - 1 67 ± 3.7 5.08)0 - 4 ± 3.9)0 - 5

mean 640 2.18)0 - 1 63 ± 1.6 4.62)0 - 4 ± 3.1)0 - 5

640 5.21)0 - 2 65 ± 2.0 4-49)0 — 4 ± 2.O)o — 5

As a further check on the method the estimated values of deq were com
pared with the values known from equilibrium data:

deq = 1.067(n - 1)6/5-0.0915 (11)

for the models I and II (Domb (7)),

de’ ‘ 2(n"1)_8 + 8”5"~8 (12)

for the models III—VI, and
deq = n - 1 (13)

for model VII. As can be seen from table 3 the agreement is satisfactory. 
The method of estimation thus being confirmed, the results of the simulations 
will now be considered. Of the parameters estimated, 72 is the most interesting 
since 72”1 supposedly has some connection with the relaxation time in certain 
experiments on polymers. All the estimated values of 72 with the estimated 
standard deviations are shown in Table 4. (The values of 73 were generally 
larger by an order of magnitude.)

It is of course not really the absolute values of 72, but only the way in 
which it depends on n (the number of atoms in the polymer), which can be 
predicted by the simulations. Naturally the functional form to be chosen is 
open for discussion. It is easily seen that:
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Table 3.

Table 3 shows that the values of the squared end-to-end distance at equilibrium, deq, 
estimated from the relaxation curves are essentially identical with values known from 
equilibrium data (formula (11), (12) and (13)).

n 8 16 32 64 128

Formula (11) 10.8 27.2 65.5 154 358
Model I 10 ± .3 27 ± .6 67 ± 4 111 ± 20 489 ± 80
Model II 12 ± .3 27 ± .9 61 ± 3 166 ± 9 319 ± 24

Formula (12) 9.88 21.9 44.9 93.9 190
Model III 10 ± .3 26 ± 1.6 62 ± 9 268 ± 20 990 ±150
Model IV 11 ± .2 22 ± 7.7 45 ± 1.3 98 ± 4 201 ± 10
Model V 11 ± .3 23 ± .8 45 ± 1.7 95 ± 4.3 190 ± 15
Model VI 20 ± .2 19 ± 2 48 ± 2 101 ± 6 171 ± 25

Formula (13) 7 15 31 63 127
Model VII 7 ± .1 15 ± .4 30 ± 1.7 59 ± 5 107 ± 14

72 an v (14)

is a possibility, and that v = 4 for model I and III and v = 3 for the other 
five models would not be unreasonable. This is a result which for the models 1 
and VII agrees with Verdier (3). For the models II, IV, V and VI however 
the addition of a further term in eqn. (14) seems necessary to get agreement 
with the values for 72 for n = 8, so the forms shown in Table 5 are tentatively 
proposed as a representation of the values of 72. (The factors are least-square 
estimates and the uncertainties are standard deviations). It should be noticed 
that the time-unit for 72 is the model-time unit. To convert the results to real 
time-units, the values of 72 should be multiplied by n.

I
II 
ill
IV
V
VI
VII

Table 4.

8 16 32 64 128

(3.8 ± .6)10 — 2 (2.2 ± -2)10 - 3 (1.3 ± .2)10 — 4 (5.5 ± .9)10 - 6 (4.9 ± .7)10 - 7
(4.5 ± ,7)10 - 2 (3.6 ± .4)10 - 3 (3.6 ± .3)10 - 4 (5.5 ± .5)10 - 5 (5.0 ± ,4)10 - 6
(2.3 ± ,3)l0 - 2 (2.1 ± .3)10 - 3 (1.3 ± ,2)10 -4 (1.2 ± .l)10 — 5 (4.7 ± ,8)10 - 7
(5.0 ± .6)I0 - 2 (3.9 ± .3)10 — 3 (4.5 ± ,4)10 - 4 (5.6 ± .3)10 - 5 (7.8 ± .4)10 - 6
(4.7 ± .6)10 — 2 (3.7 ± ,3)10 - 3 (3.5 ± .2)10 — 4 (5.1 ±.3)10-5 (5.3 ± ,3)10 - 6
(2.3 ± .3)10 - 2 (1.9 ± .3)10 - 3 (3.1 ± ,2)10 — 4 (3.7 ± .2)10 - 5 (4.2 ± ,2)10 - 6
(4.4 ± ,4)10 - 2 (5.2 ± .3)10 — 3 (5.9 ± ,3)10 - 4 (7.9 ± .3)10 - 5 (8.9 ± ,3)10 - 6

Table 4 shows the estimated valves of the reciprocal relaxation time, y2, in model-time-units.
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Table 5.

Table 5 shows the estimated dependence of the reciprocal relaxation time, y2, on the 
number of atoms in the polymer. Remark that the time-unit is the model-time-unit.

Model a2

I (129 ± 7) n-4
II (10.2 ± .7) n 3 + (81 ± 20) n4
III (129 ± 8) n-4
IV (14.8 ± .6) n-3 + (35 ± 18) n 4
V (10.8 ± .5) n-3 + (74 ± 18) n 4
VI (9.0 ± .4) n-3 + (17 ± 12) n 4
VII (19.8 ± .4) n-3

* These conclusions should be compared with the analogous conclusions by Verdier (3).

It seems possible to draw the following three conclusions from the material 
shown in Table 4 and 5.

The real excluded volume has only an imperceptible influence on the 
relaxation (compare Model I and II with Model III and IV).

The possibility of a valence-angle equal to 0°, however, has an appreciable 
influence (compare Model III with Model VII)*).

The additional possibility of movement introduce in Models II and IV 
as compared with models I and III causes also a radical change in the relaxa
tion behaviour.

The general result is then that it is the local structure of the polymer rather 
than the long-range effect of the excluded volume, which is of importance for 
understanding the movements of polymers.
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Appendix

A General Least Square Method

Consider n uncorrelated observations yd) (j = 1, 2, . . . , n) of a p- 
dimensional stochastic variabel having the same p-variate distribution, F, 
with mean value p given as a function of m parameters, ßi(i = 1,2,..., m), 
where m < p :

th = gj(ß) j = 1, 2, . . . , p (I. 1)

The problem is that of finding reasonable estimates for the parameters, ßj, 
and for the variance of the estimators used.

The sample mean:

y = - 2 y(i) (i- 2)
n i = i

will in general, following the central-limit theorem, be asymptotically (n -> œ) 
1normally distributed with mean p and a dispersion matrix - 2, S being the 
n

dispersion matrix of F. Argueing from this or from the general theory of 
least squares a good estimate of ß should be the value of ß that minimizes:

q' = (yr - gr(ß»re(y8-g8(/3)) (1.3)

(yr without superscript stands for component of y defined in (I. 2), ors are 
written for elements of 2_1, and here as well as in the following we use the 
convention that repeated indices in a product means summation over these 
indices, the limits of the summations being self-evident).

In order to be able to solve the problem of minimizing q it is indispensable 
to know 2. Since 2 cannot be assumed known it is necessary to use an estimate 
of 2.

An unbiased estimate for the elements of 2 is (conf. e. g. Rao (8))

Using this in (I. 3), the quadratic form to be minimized becomes:

q = (yr - gr(ß))srs(ys - gs(ß)) (I. 3a)
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(superscripts on a matrix-element are again used to designate the elements 
of the inverse matrix).

We shall not here consider the intricate numerical problem of finding 
minimum for q if g(ß) is not linear in ß. The solution, ß*, will in any case 
satisfy the equations:

sr8(ys - gs(ß)) = 0

1 = 1, 2, . . . , m
(1.5)

ß* being an implicit function of y by (1. 5). A simple extension of the proof 
by Cramer for variance of functions of moments (Cramer (9) p. 353 ff.) gives :

C{ßj:,ßk} = ~(CTrs/n)^ +O(n 3/2) = djk (1.9)
uyr dys

where

aki(/5) =

where ors is an element of 2.
By (1.5):

dßk ^gs(ß)
öyr ößi

d2q 
dßidßk

(I- 10)

(I. 11)

Hence using ssr for osr and neglecting terms of the order n 3/2

4
n dßj ß

(I. 12)

To be correct it is not only y also srs that is estimated.
Making allowance for this is somewhat complicated. However, using the 

normal approximation, y and {srs} becomes uncorrelated and the covariance 
of srs and Stu becomes:

C{Srs>Stu} — (SruSst + SrtSsu)/(n — 1). (!• 13)

fhe total-effect is then the addition of

(I- 14)
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to dlk (For a proof see the end of the Appendix). Hence the total covariance
matrix is

(I. 15)

This should be compared with the analogous result by Rao (10, 11) for the 
case where g(ß) is linear in ß.

Since qis of the order n“1 and the relative error of omitting terms of order 
n“3/2 in (I. 9) is of the order n”1/2, (I. 12) will actually do just as well as (I. 15).

However, reasonning this way (I. 12) can be simplified even more. As 
the second terms in (I. 11) is of the order n“1/2 as compared to the first, alk(ß) 
can be approximated accurately enough by:

2bIk(ß) ~ 2 dp! S dßk
and using this, (I. 12) becomes

d(-k = bkl(/?*)/n.

(I- 16)

(1. 17)

Finally a proof of eqn. (I. 14) under the assumption of a normal distribution 
shall be given.

Introducing S(rs) for the complement of srs i S(S = {srs}) and a double 
complement S(rs)(tu) being equal to the complement of Stu in S(rs), if r 4= t and 
s + u, and zero otherwise, and using |S| for the determinant of S, straight
forward calculations give:

g(rs)(tu) = S(ts)(ru)  §(tu)(rs) = g(ru)(ts)

Srs = S<rs>/|S|
0srs 3<rs)(tu) SJ(rs)sptu) 

dstu ~ FsT " H’sK

(I- 18)

(I- 19)

(I. 20)

S(rs)(tu)Stti = S^)gsv(l - 6SII) + S(rs)8uv(l - 8SU) (I. 21 )

(factors (1 - 8SU) and (0 - 8SU) will not cause summation irrespective of the 
indices s and u being repeated).

dsrs
stv = sru8sv( 1 - 8SU) + srs8uv(0 - 8SU) (I- 22)

dstu
dsrs dstu
„ SvxSwy „
f/Svw ^$xy

SruSts (1- 23)
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Then on evaluating dlk in the same way as dlk we get:

4
n - 1

akl(/3*)
dgr(ß)

(Vs - gs(^*))
£=ß*

ÖSrs
“ (SvxSwy 
dSvw

dstu
+ SvySwx)T

(yt gt(n>

USxy
(1. 24)

Using (I. 23), (I. 5), (I. 3a) and (I. 12), (I. 24) can be transformed into 
(I. 14). The essential content of (I. 14), namely that d'lk is smaller than dlk 
by a factor n, can of course be seen very easily by a direct comparison of 
(I. 24) with (I. 12), which shows that (I. 24) contains two extra factors of 
the form (yj-gj(ß*))> each being of the order n_1/2.
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